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ABSTRACT

The thermal expansion, density, thermal diffusivity, and
specific heat of various tungsten-uranium dioxide composites
were measured from roomtemperatureto very hightemperatures.
Because of the sample geometry, it was necessary to account for
the finite pulse time effects in the thermal diffusivity measure-
ments. The mathematical expression for a square wave energy
input was derived and experimentally verified. Thermal con-
ductivity values were calculated from the density, specific heat,

and diffusivity results.
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THERMAIL PROPERTIES OF TUNGSTEN-URANIUM DIOXIDE MIXTURES

by

R. E. Taylor
"Atomics International
Div. North American Aviation, Inc.

SUMMARY

The objective of this program was to determine the thermal expansionand
thermal conducfivity, from room temperature to 5000°F, of four composites

(viz: 10, 20, 30, and 40 vol %) of uranium dioxide in a tungsten matrix.

The thermal expansions of the four composites were measured over thisg
temperature interval, and equations for the results are given. Theagreement
between measured and calculated values is generally within 5%; but in a few
cases, is as high as 8%. The expansions of these mixtures are, as expected,

very close to that of pure tungsten.

The thermal conductivity was not measured directly. Instead, the diffu-
"sivities of the various mixtures were measured, and the thermal conductivities
were calculated as the product of the specific heat, density, and diffusivity.

The density and diffusivity were not corrected for thermal expansion, The
expansion increases the diffusivity by the square of the increa.se in length of

the sample, and decreases the density by the cube of this quantity. Consequently,
the net effect is a 2% error in the thermal conductivity values at high tempera-
tures. Since this is well within the +9% uncertainty in the conductivity, it was

considered unnecessary to correct the density and diffusivity values.

Conductivity values were also calculated using the Bruggeman variable-
dispersion equation. These results are higher than the experimental values
obtained from this study, partly because of anisotropic effects. In addition,
the thermal conductivity of tungsten is not known accurately, and this may be

the cause of some of the discrepancy.

The electrical resistivity of the 80 W - 20 UOZ mixture was measured, and
the results were used to calculate the contribution of free electrons to the total

conductivity, It was found that the major portion of the heat transport is due

to electrons.



I. INTRODUCTION

Space mission analyses indicate that the thrust requirements of some space
exploration vehicles can be met through the use of nuclear propulsion systems.
Advanced concepts of nuclear rockets require high operating temperatures for
higher thrust and lower engine weights. A thermal nuclear rocket concept is
presently being studied at the Lewis Research Center of NASA.1 This concept
is based on the use of tungsten-uranium dioxide (W-UOZ) composites for the
fuel element materials. These composites are currently being fabricated in
the form of plates which are useful in initial studies to determine the behavior

of this combination of materials at elevated temperatures.

To aid preliminary design analysis of this reactor concept, a knowledge of

the properties of W-UO, compositesis desirable, For this purpose, high-

temperature mechanicalzproperties of various W—UOZ composites are being
determined at the Lewis Research Center.2 Certain physical properties of
various W-UO2 composites have been studied at Atomics International, under
NASA contract NAS3-4280, The specific objective of this study was to determine
the thermal expansion and thermal conductivity values from room temperature
to 5000°F for four compositions (viz., 10, 20, 30, and 40 vol %)* of uranium
dioxide dispersed in a tungsten matrix. Since these values are highly dependent
on the size and nature of the dispersed particles and on the fabricationhistory

of the composites, the values determined in this program are to be considered
only as indicative of the properties of the materials to be used in the actual

fuel elements.

The present report constitutes the final technical summary of the experimen-
tal work performed in this physical property evaluation program. In this study,
the thermal expansivities of four W-UO2 composites were determined directly,
by measuring the relative linear displacements of plate-type specimens as a
function of temperature. Although thermal conductivities can also be measured
directly, the sample configuration was not amenable to this type of measurement,

Therefore, to simplify the thermal conductivity determinations, this property

*In this report, percentages are expressed as volume percent (vol%), and tungsten is listed first.




was obtained by measuring the thermal diffusivity (&), and calculating the thermal

conductivity (k) from the relation:

H

k =oc_d ..o (1)
P.

where c_ is the specific heat and d is the density., Since this method is as re-
liable as measuring the thermal conductivity directly, the former method was
chosen for this program, This technique required measurement of density,
thermal diffusivity, and specific heat. The results of these measurements are

reported herein,.
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Figure 1. Photomicrographs of W--UO‘2 Mixtures




{I. MATERIALS

The test materials used in this study were fabricated in the form of plates,
about 0.030 in. thick., Powder metallurgy techniques are used to produce sin-
tered compacts of about 60% of theoretical density. Batch sintering these com-
pacts in hydrogen at 3150°F results in a densification to about 92% oftheoretical
density. The compacts are clad with tungsten, to retain the fuel, and hot rolled
to produce a very dense structure.3 Photomicrographs of samples of W - UO2

mixtures are shown in Figure 1. The UO2 is visible as randomly distributed

spheroids.

The densities of the samples used in this study were determined by the
standard water displacement method. These results are summarized in Appen-
dix I, and are compared to the theoretical values in Figure 2. The densities

of the 70-30 and 60-40 mixtures are greater than the theoretical density

THEORETICAL
EXPERIMENTAL O

DENSITY (g/ce)

o l ! | | | | L 1 |
o] 0 20 30 40 50 &0 70 80 SO 100
U0, (vol %)

24874708
Figure 2. Density of W—UO2 Mixtures

for W—UO2 compacts due to the tungstencladding onthe surfaces of the samples;
Because of the small sample size used for the 70-30 mixture (<0.2 g, Appendix I},
the density obtained for this mixture may not be representative of the bulk mate-
rial of this composition. Since the density valuesobtainedinthis study are close

to the theoretical density of the material, thetheoretical values were used for

conductivity calculations.
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lll. THERMAL EXPANSION

A, APPARATUS AND EXPERIMENTAL PROCEDURES

The test equipment for measuring linear thermal expansions to very high
temperatures is described in detail in the litera.’cure.4 Measurements are made
by observing the relative displacements of fiducial marks on the opposite ends
of 5-in, long specimens as they are heated in a graphite tube furnace. Displace-
ments are measured with two telescopes fitted with filar eyepieces, capable of
accurately and reproducibly measuring to £0.00005 in. Samples are usually
allowed to expand freely on a tungsten holder, within a tantalum tube which pro-
tects them from contamination. The furnace atmosphere is controllable from
vacuum (1 mm Hg) to 200 psi. Often, dried argon at 50 psi is used. Generally,
about 2 hr are required to reach a new set temperature and stabilize the furnace.
The thermal gradient across the sample varied with temperature, being about
60°F at 1000°F and 20°F at 2000°F.

This apparatus, which is shown in Figure 3, has been used to measure the
expansions of molybdenum, tantalum, and graphite to 6500°F .5 Recently, data
on the carbides of silicon, boron, and titanium, as well as the oxides of aluminum,

magnesium, and beryllium, were obta.:'.nec'ﬁl..é"7

B. RESULTS

The results for the 90-10, 80-20, and 70-30 mixtures are presented in
Figure 4. The coefficient of expansion of the mixtures increases with increas-
ing UO2 content. However, the expansion of all of these mixtures is muchcloser
to that of pure tungsten than it is to an avéragéd expansion of tungsten and UOZ'
In fact, the expansion of the 90-10 mixture is very close to the expansion of
pure ’cungsten.8 For example, at 2190°F, the expansion of W is 0.60% and that
- of the 90-10 mixture is 0.605%, while the expansion of UO2 is 1.27% at this tem-

pera.ture.9 An average expansion of the 80-20 mixture is 0.74% at 2190°F, while
the observed expansion is only 0.64%. The expansion of the 70-30 composition

is very close to that of the 80-20 composition.

The least-square equations for the expansion of the 90-10, 80-20, and
70-30 compositions, for 60°F <t (°F) < 5000°F, are:

11
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90-10: % expansion = -1.748x107% +2.8997x 10" % - 3.5932x 10" %% +
2.1028 x 10" 123 . (2)
— -2 -4 -8.2
80-20: % expansion = -2.321x10 © +3.9013x10 “t - 6.0273x10 "t~ +
1.1362x 107113 .(3)
o -2 -4 8.2
70-30: % expansion = -1.7124x10 ~ +2.8387x10 "t + 1.08175x10 "t +
7.4091x 107133 . (4)

These equations are plotted with the experimental data in Figure 4.

By differentiating these equations with respect to t, and accounting for the
factor of 100 which changes percent expansion to the decimal, one obtains the
equations which express the coefficient of expansion as a function of tempera-

ture for each of these compositions:

90-10: coeff. of expansion = 2.8997x107° - 7.1864x 10711t +
6.3084x 10~ 142 ... (5)
6 9

80-20: coeff. of expansion = 3.9013x 10"~ - 1.20546x10 “t +

3.4086 x 10™13¢2 . (6)

6 10

70-30: coeff. of expansion = 2.8387x 10~ + 2.16350x10 "t +

2.22273::10‘14t2 ... (D

For example, the coefficient of expansion of the 90-10 mixture at 2000°F is
3.01x1078/° F,

The initial expansion of one of the samples of the 60-40 mixture, (circles on
Figure 5) was veryclosetothat ofthe 80-20and 70-30 compositions. However, the

thermal expansion measured during subsequent runs on the same specimen

13



(triangles, Figure 5)andforall runs ona second sample (squares, Figure 5) were
appreciably above the initial values. The reason for this behavior is not
understood, but may be due to stress-relief during the initial heating to 4200°F.

The equationfor the expansion, measured during all but the one initial run, is

8,2

4 1.4755x1075%% +

2

60-40: % expansion = -2.3323x 10 + 3.8906x 10"

4.8042x 10712 ... (8)
The expansion of the 80-20 material was measured in the width direction at
high temperatures. Due to the sample dimensions, it was not possible to meas-
ure the expansion below 3700°F with sufficient accuracy. However, the data

above that temperature show that the expansion is isotropic. These data points

are included on Figure 4.

14




IV. SPECIFIC HEAT

A. CALCULATED VALUES

Specific heat values of the various composites were obtained by suitable av-
eraging of the specific heats of the two components (Knoop's rule). Fortunately,
the specific heats of tungsten and UO, are known to withina few percent. 10,11 Con-
sequently, the calculated specific heats should be accurate to within +4%. The

results are plotted in Figure 6.

B. ENTHALPY

The most common technique for determining the specific heat is to measui'e
the increase in enthalpy as a function of temperature, by means of a drop calo-
rimeter. The specific heat, which is the slope of the enthalpy curve, may then
be determined graphically or by differentiating the equation which expresses
the enthalpy data. In order to check the validity of the specific heat calculations,

the reverse procedure was followed (i.e., the equation which expresses the

.specific heat of the 80-20 mixture was obtained by a computer, and was integra-

ted to obtain enthalpy values which were checked against experimental enthalpy
values). The results are plotted in Figure 7. The enthalpy was experimentally
measured by Thermatest Laboratories. Three of the enthalpy points had large
errors associated with them, because the enthalpy of the graphite crucible used
to hold the sample constituted an appreciable portion of the total measured
enthalpy. The other points, which were obtained using a copper crucible, were
subject to much less error, because of the smaller enthalpy of the copper cru-
cible. When the normal measuring errors, which are estimated at 5%, are
added to the uncertainties caused by the entﬁalpy of the crucible, the eathalpy
values overlap the calculated values above 800°F. Consequently, the calcu-

lated specific heat results were used in the subsequent thermal conductivity

calculations.

15
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" pyrometer has been described in a recent a,rticle,13 it will not be discussed

V. THERMAL DIFFUSIVITY

A. APPARATUS

The flash diffusivity method, which was originally described by Parker
et g.l..,lz was used for the thermal diffusivity measurements. In this method,
a pulse of energy is radiated to the front face of a disk-shaped sample, and the
resulting temperature history of the rear face is used to determine a diffusivity
value. The ambient temperature of the sample is controlled by a tantalum
tube heater, and the pulse of energy raises the average sample temperature only

a few degrees.

In the original description by Parker et 1_1.,12 a xenon flash lamp was used
as the energy source However, the flash lamp is limited by the fact that the
emitting area is so large that optically focusing the energy on a small specimen
is not very practical. Therefore, one must keep the flash lamp near the sample,
which is not convenient at high sample temperatures. On the other hand, a
laser efficiently concentrates the flash lamp energy into a coherent light beam,
well suited for irradiating small samples which are enclosed within vacuum
furnaces. Consequently, our laboratory uses a laser beam energy source for

the flash diffusivity apparatus.

The rear face sample temperature is measured with thermocouples up to

3100°F, and with a photoelectric detector at higher temperatures. Both PbS

and photomultiplier tubes have been used as detectors. Since the recording

here.

The apparatus is shown in Figure 8. A vacuum chamber (not shown) fits
over the tantulum tube heater and shield. The mounted sample and radiation
shields are shown near the heater. During a measurement, the sample and
holder are placed inside the tube heater. The laser is shown in the lower left
hand corner of the photograph, and the recording pyrometer is shown lined up
with the laser and the tube furnace. The vacuum system is located beneath
the table.

17
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B. FINITE PULSE TIME EFFECT

From the transient response of the rear face temperature, the simple

relation

_ 2, 2,
o =1.37a%/n t1/2 R

No]
-

was obtained by Parker et al., where tl/?.is the time required for the backface
to reach one-half of its maximum temperature rise, and a is the sample thick-
ness. The derivation of Equation 9 assumes that the energy pulse is received

within a2 time duration (7), which is short compared to characteristic risetime

(tc) given by

t, =a’/n’a ~..(10)
Normally, one chooses an appropriate thickness for a given material, such that
t. > 50 7, and Equation 9 is then obeyed within 2%. However, in the present
case, the sample thickness had to be held constant. Since the diffusivity of

each mixture is a fundamental property of the material, the characteristic

time was fixed for each sample at each temperature. Of course, the char-
acteristic times varied with composition and temperature. However, the range
of characteristic times for these materials was from 1 to 7 msec. Consequently,
in order to apply Equation 9, T should be from 0.02 to 0.14 msec. Since the
normal duration of the laser burst is from 1.1 to 1.7 msec, this condition is not
met. It is possible to shorten the laser pulse by means of "Q" spoilers. This

in an expensive and inefficient operation. In fact, about 90% of the available
energyislost, making itdifficult to produce a sample temperature rise sufficient for
accurate measurements. In addition, extremely rapid response thermo-
couples and amplifiers are required for the measurements. Consequently, the
mathematical expression which expresses the heat flow was modified to take

into account the finite pulse time effect.

The general equation which expresses the heat flow in a thin wafer subjected
to an energy pulse on one side was solved by J. Cape and G. Lehman of our
la.bora.tory.14 This equation takes into account both the finite pulse time effect

and radiation losses from the edges. Cape and Lehman solved the radiationless

19
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case for a finite sawtooth pulse. However, an examination of the laser pulse
revealed that it closely approximated a square wave. Therefore, it was neces-
sary to solve the general expression for a square wave energy input. This is

done in Appendix IIT,

Because there are three variables (tc, T, and t) instead of two, it is not
possible to plot t/t_vs 8(a,r,t)/d(a,r,?) where §(a,r,t)/b(a,r,») is the ratio of the
rear face temperature rise to the maximum rise, as Parker et al. did when

they determined that, when this ratio equals 0.5:

t=ty), =137t ... (11)

When one substitutes Equation 10 into Equation 11, one obtains Equation 9,
which is the expression used to calculate diffusivities from the experimentallly

measured half-time when 7 is small compared to tc' Inthe present case, how-

ever, it is possible to plot 'r/tc vs tl/Z/tc’ to yield a curve which can be used to
calculate t_, and hence g, from the experimentally measured values of 7 and
ti/Z' In order to obtain such a curve, one must first plot values of §(a,r,t)/
&(a,r,®) for selected values of T/tc, by varying the values of t/tc in Equation 22

(Appendix I1I). Fromthese plots, the value of‘cl/Z/tC is determined for each of
the selected values of T/té-

The graphs of T/tc vs tl/Z/tc for a square wave and sawtooth energy pulse
are shown in Figure 9. The curve for the square wave energy input shows, for
example, that, when the pulse time is 0.8 of the characteristic time, the numer-
ical factor is 1.785, instead of the 1.37 value used when pulse times are short
compared to the characteristic time. For this particular case, then, an error

of 30% is involved in neglecting the effect of the finite pulse time.

The validity of the described procedure was verified experimentally using
Armco iron, which is the generally accepted thermal conductivity standard.
Since the diffusivity of Armco iron decreases rapidly with increasing tempera-
ture, the characteristic time has a strong temperature dependency. Of course,
the characteristic time can also be changed by varying the sample thickness.
Consequently, it is possible to check the mathematics by either measuring the
diffusivity of samples of different thickness or by measuring the diffusivity of
the same sample at different temperatures. Both methods were used to obtain

the results shown in Figure 10. The solid line represents the literature value,
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the solid points represent the values obtained from the experimental values of

T and t and the unfilled points represent the uncorrected data. These data

b
represclar/n? values of T/tc ranging from 0.3 to 1.5. Some of the values at room
temperature are in error; because the laser pulse is not a true square wave,
but lies somewhere between a square wave and a sawtooth function. This is
illustrated in Figure 11, which shows the photocell output from the time the
flash lamp fires until the output returns to its base line, and also shows the
rear face temperature response. Forthefirst 1/2msec followingthe initiation
of the flash lamp discharge, the laser crystal acts as a ''light pipe." Although
this energy is apparent to the photocell, it is insignificant as far as heating the
sample is concerned, and the pulse width and half-time are measured from the
initiation of the laser action, as indicated in the figure. The experimental
curves from two separate experiments are shown in Figure 11. The half-time
measured {rom the lower curve can be expected to be influenced to a greater
extent by the deviation of the laser pulse from a true square wave, since the
rear face temperature is rising during the laser action. Consequently, the
true correction for this curve lies between the correction curves for the square
and sawtooth energy pulses shown in Figure 9. This causes the corrected data

to be several percent high when the half-time is only 1.5 times the pulse width.

C. RESULTS

It was planned originally to use the photoelectric pyrometer for the high-
temperature (i.e., > 2500°F) measurements, and thermocouples for the low-
temperature measurements. However, the photoelectric pyrometer went into
saturation for 10 msec following the laser pulse. While this does not interfere
with obtaining results on samples of 0.1 in. thickness, where the rise time is
usually several hundred milliseconds, it prevented the obtaining of data for the
thin samples, since their rise time is less than 10 msec. Although this problem
could be overcome by modifying the apparatus and obtaining a set of laser inter-
ference filters, cost and time elements prevented this being done within the
scope of the present contract. Consequently, the measurements were limited
to the use of thermocouples. However, tungsten-tungsten/Zé% rhenium thermo-
couples were substituted for the Chromel-Alumel thermocouples, in order to
extend the practical range to 3800°F. The diffusivity data are so well-behaved
that the results can be confidently extrapolated to at least 4500°F, and this was
done for the pufpose of estimating the thermal conductivity up to this tempera-

ture.
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The results for two samples of the 90-10 mixture are shown in Figure 12.
The diffusivity decreases smoothly from 0.471 cmz/sec at 100°C (212°F) to
0.220 cmz/sec at 2000°C (3632°F).  The maximum scatter in the data from the

smooth curve is 10%, and the usual scatter is within 5%.

The results for the 80-20 mixture are shown in Figure 13. Two different
thicknesses (0.0281 and 0.0605 in.) were used in these experiments. Since the
thickness enters into the equation as the square term, the use of these two
thicknesses is equivalent to changing the experimental conditions by a factor of
four. Consequently, the agreement between the results for the two thicknesses
constitutes a verification of the experimental values. The diffusivity of the
80-20 mixture decreases from 0.313 cm®/sec at 100°C to 0.197 cm®/sec at
2000°C.

The diffusivity of the 80-20 mixture was also measured in the length direc-
tion, and it was found to be significantly greater than that measured in the
width direction. This is shown in Figure 13. Because of the sample geometry,
measurements made in the length direction do not require the finite pulse time
correction discussed previously. However, due to heat loss from the sides of
the specimen, the measurements are limited to low temperatures. Nevertheless,
the measurements show that the thermal conductivity, unlike the thermal expan-
sion, is anisotropic, with the thermal conductivity in the length direction being

20 £ 10% greater than the conductivity in the width direction.

The results for the thermal diffusivity of the 70-30 mixture are given in
Figure 14, and the results for the 60-40 mixture are given in Figure 15. The
reproducibility of these data is better than that obtained on the 90-10 and 80-20

mixtures, because of the lower diffusivities and consequently longer character-

istic times.
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VI. THERMAL CONDUCTIVITY

A. VALUES OBTAINED FROM MIXTURE CALCULATIONS

Numerous equations have been derived for the calculation of the thermal
conductivities of mixtures, based upon the conductivities of the components.
These equations have been summarized by Powers,lSWho classified the equations
according to the basic assumptions concerning the nature of the mixture. Three
equations, the Bruggeman variable-dispersion, the Botcher, and the Meredith
and Tobias, were investigated, since the assumptions made in their derivations

are believed to be approximately true in the case of the W-UO2 dispersions.

The Bruggeman variable-dispersion equation, which assumes that spherical

particles are imbedded in a continuous phase, is given by

l K -KZ K --.(12)

K. -K K 1/3
1-P. = 1 m( 2)
1 m

where:
Pl = volume fraction of the discontinuous phase
Kl = conductivity of the discontinuous phase
KZ = conductivity of the continuous phase
K__ = conductivity of the mixture.

For any given temperature, Kl and K2 are constant. Consequently, it is pos-
sible to plot K, asa function of Pl’ in order to determine the conductivity of

any compasition. Figure 16 is such a plot for W-UO2 at 200°C. Experimental
values, obtained by BMI on 50-50 and 30-70 vol% W-UO2

shown in the figure. The calculated values are approximately 20% above the

mixtures, 16 are also

experimental results for both compositions. A similar plot for 800 and 1200°C
is shown in Figure 17. From this figure, it can be seen that the experimental
resul’s are only a few percent different from the calculated values at 800°C.

No experimental values were determined by' BMI above 1000°C. 16

Botcher 15 devised an equation, based on the assumption that eachparticle
is surrounded by a medium of Km, and not necessarily surrounded completely

by the opposite phase. It is:
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m 1=P

K -K KZ-Kl
=R ® 5% - ... (13
3K 2K +2K_ | (13)

2

The results for W-UO, at 200°C are given in Figure 16, and the results
at 800°C are included in Figure 17. It should be noted that the agreement be-
tween the experimental results and the calculated values is better at 200°C for

the Botcher equation, and better at 800°C for the Bruggeman variable -dispersion

equation.

Recently, Meredith and Tobia.s,lsusing the Maxwell equation, derived a
dispersion equation for variable concentrations, based on the assumption of
only two particle sizes, rather than a large number of particle sizes, as assumed

in the Bruggeman variable-dispersion equation. Their equation is:

4K, + 2K1 - 2.1:’1(K2 -K

2
K =K
m 2 4K2+2K +P2(K2-K

4K, + 2K, - P,(4K, - K]
4K, + 2K, - P,(K, + 2K )

!
R

... (14)
1

As shown in Figure 16, the results of this equation are very close to that of

the Bruggeman variable-dispersion equation.

The experimental results for the present samples are compared to the
values calculated, using the Bruggeman variable-dispersion equation in the

following sections.

B. VALUES OBTAINED FROM THERMAL DIFFUSIVITY

Equation 1 was used to compute the thermal conductivities of the various

mixtures. These calculations are summarized in Appendix V.

The results for the 90-10 and 70-30 mixtures are plotted in Figure 18, and
the results for the 80-20 and 60-40 mixtures are plotted in Figure 19. The
conductivities of each of the mixtures decreases with increasing temperature;

and, as noted in Section V, the conductivity is anisotropic.

The calculated values for km are also plotted in Figure 18 and 19. From
these figures, it can be seen that km is greater than the experimentally observed
k. This is due, at least in part, to the anisotropic effect, and is in semiquan-

titative agreement with predictions based on Power's report.
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The experimental thermal conductivity results, for the various composites

and for pure W and UOZ’ are summarized in Figure 20.

C. VALUES OBTAINED FROM ELECTRICAL RESISTIVITY

Contemporary theory states that the heat conduction in electrically conduc-
ting materials is the sum of the electronic conduction (ke) and phonon (lattice)
conduction (kp), ie.,

k =k +k ...(15)
€ P

t

where kt is the total heat conductivity. The heat conduction due to electrons

is given by the Wiedemann-Franz relation

k

_ LT
e =5 ... (16)

where:
L = a constant, theoretically equal to 2.45x 10"® w-g/°k?
T = the absolute temperature (°K)
p = the electrical resistivity, (Q-cm)

Although the phonon conduction should follow a 1/T law, there is ample evidence
that it may not do this. 17 In any event, the total conductivity must be equal to

or greater than the electronic conductivity alone.

The electrical resistivity of the 80-20 material was measured by the dc
potentiometric drop method, in which the voltage drop caused by the passage of
a dc current through the sample is compared to the voltage drop across a stand-
ard resistor. The current is then reversed and the process repeated, in order

to eliminate the effects of stray emfs.

The results, along with literature values for tungsten, are given in Figure 21.
These values were used to calculate the thermal conductivity contributon due to
electrons, and the results are plotted in Figure 19. Since the electrical resis-
tivity was measured in the length direction, ke should be compared to the k

obtained for the length direction. When this is done, one notes that ke is less
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than k, as it should be, and that about 80% of the heat is transported by electrons
at 400°C. This is in good agreement with the results from BMIL 16
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APPENDIX |

SAMPLE DENSITIES

Mass in air (g)
Mass in water (g)

Temperature of
water (°C)

Volume of sample
(cc)

Density of sample
(g/cc)

Sample Composition

90 W - 10 UO2 80 W - 20 UO2 70 W - 30 UO2 60 W - 4OUOZ
2.1494 1.1880 0.1979 1.3529
2.0296 1.1192 0.1863 1.2692

22.1 22.1 21.9 21.9
0.1204 0.0692 0.0116 0.0841
17.85 17.17 17.06 16.09
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Using the notation of Cape and Liehman's paper,14

[

expressed as

@

(k/q )6(a,r,t) = D_(r,y ) Z Cr¥m

m=o
For a square wave input,
W(t)=7 , t<=sT
=0 t>T

For a radiationless case,

= ofoye -1y

CoXen = 20T,
CX =¢

o O a

(953 =0

00

w :-mz ’

om

forts T,

(k/qo)d(a:r,t) = Do(r’yr) %

t
Jo
t
c

_ alt
= Do(r,yr)a ? + 27

1
dt'a: +

APPENDIX I
FINITE PULSE TIME EFFECT

2
=

m=1

o]

m=

(-1)
2

m
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m

dt'W(t') exp [wom(t - )/t ]

=1,2,3...

1,2,3...

t 2
J dt' exp [-m“(t - t‘)/tc'_]
1 {

»]

(1 - exp (—mzt/tc)]

the heat flow can be

e (17)

... (18)




fort>r1T,

(k/q )8 (a,T,t)

But, fort==

Therefore,

&(a r t) -

6(371';@

[e o]

T

- o L

= Do(r’yr)i- [J dt -t
)

m

[o2]

T

m=1 m

’

k/q_b(a,r,®) = D (z,y)5
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.
12, Z (—1)rn J' dt' exp [:mz(t - t')/tc]\
=1 [») .

...(20)

...(21)

... (22)

2t (-1)™ 2 2
Do(r,yr)% 1 +— Z >— exp {(-m t/tc)[exp (m 'r/tc)-lj. ...(19
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